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ABSTRACT 
 
 

 Link-budget analysis is commonly applied to satellite and wireless 

communications for estimating signal-to-noise ratio (SNR) at the receiver.  Link-budget 

analysis considers transmitter power, transmitter antenna gain, channel losses, channel 

noise, and receiver antenna gain.  For underwater signaling, the terms of the sonar 

equation readily translate to a formulation of the link budget.  However, the strong 

frequency dependence of underwater acoustic propagation requires special consideration, 

and is represented as an intermediate result called the channel SNR.  The channel SNR 

includes ambient-noise and transmission-loss components. Several acoustic 

communication and navigation problems are addressed through wideband link-budget 

analyses. 
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I. INTRODUCTION 

The availability of affordable and sophisticated digital signal processing has 

enabled modern undersea acoustic communications systems. Advances in this field have 

opened the door to autonomous sensors and untethered vehicles capable of networked 

operations in the undersea environment. 

 There is a great interest in this technology at all levels of the Department of 

Defense. Autonomous sensors and Unmanned Undersea Vehicles (UUVs) are part of the 

Defense Department’s vision of a joint force capable of rapid data assimilation and unit 

coordination. In testimony before the Subcommittee on Research and Development of the 

House Armed Services Committee on Navy Transformation, Vice Admiral Dennis 

McGinn, Deputy CNO for Requirements and Programs, stated1, 

Unmanned Undersea Vehicles (UUV) and deployable undersea sensor 
systems will extend the reach and capabilities of our battlegroup and Marine Air 
Ground Task Force (MAGTF) commanders by providing essential near-real 
time data to support ISR requirements independent of, or in concert with, the use 
of manned platforms or limited Joint Theater or National Assets….Ultimately, 
with a common integration of networks, sensors, weapons, and platforms, 
networked warfighters can achieve battlespace dominance through knowledge 
superiority. 

For radio frequency (RF) communications, link budgeting is commonly used to 

predict system performance in a representative environment. The link budget estimates 

the signal level at the receiver for a given transmit power and antenna configuration and 

accounts for environmental factors such as transmission loss and interference.  

This paper shows that the link budget can be readily applied to an undersea 

acoustic communication system using the same principles as the RF link budget. The 

acoustic link budget combines all terms of the active sonar equation to provide a first 

order approximation of signal available at the receiver. 

                                                 
1 McGinn, Dennis, VADM, Deputy CNO (Warfare Requirements and Programs), before the 

Subcommittee on Research and Development of the House Armed Services Committee on Navy 
Transformation, Feb. 20, 2002 
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II. ACOUSTIC COMMUNICATIONS LINK BUDGET 

A. LINK BUDGET 

Link budgeting is an established method of analyzing performance in wireless and 

satellite communications. Link budgets are a design tool to predict signal-to-noise ratio 

(SNR) at a receiver given system parameters such as transmit power and antenna gain, 

and channel parameters such as propagation loss and interference. This predicted SNR is 

compared to a minimum required SNR to obtain a link margin. Equation 2.1 and Figure 1 

represent a simplified link budget for wireless communications2, 

rcv xmt xmt rcv s nP P G G L L= + + + + ,    (2.1) 

where 

rcvP =Received Power, equivalent to SNR (all quantities in dB), 

xmtP = Transmitted Power, 

xmtG =Transmitting Antenna Gain, 

rcvG =Receiving Antenna Gain, 

sL = Free Space Path Loss, spreading and atmospheric attenuation, 

nL = Noise Factor, environmental noise, and multi-access interference 

(MAI). MAI is elevation in background noise levels caused by networking 

activity in the wireless medium. 

xmtP xmtG

Channel

rcvG
rcvPsL

nLTransmitter Receiver

xmtP xmtG

Channel

rcvG
rcvPsL

nLTransmitter Receiver
 

Figure 1.   Block diagram representation of the link budget expressed in Equation 2.1.  
                                                 

2 Proakis, John G., (1995). Digital Communications (McGraw-Hill, Inc., 1995) 
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1. Required Signal Level ( ) /b oE N

In digital communications, required signal level is defined as a ratio of energy per 

bit to receiver noise level, . This required signal level is a function of the desired 

nominal bit error rate (BER) for the signaling scheme employed. BER represents the 

probability of a bit error at the output of the receiver. Figure 2 shows BER as a function 

of  for a selection of signaling formats. 

/bE No

o/bE N

Theoretical bit error rate (BER)

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

4 6 8 10 12 14 16

Eb/No (dB)

B
ER BPSK QPSK

DE-BPSK DE-QPSK

D-BPSK

D-QPSK

Coherent MFSK

Incoherent MFSK

 
Figure 2.   Theoretical bit error rate vs. for selected modulation schemes. BPSK and 

QPSK stand for binary and quadrature phase-shift keying respectively. DE refers to 

differential encoding and D stands for differential demodulation. MFSK is an 

abbreviation for M-ary frequency shift keying. Data compiled from multiple sources.3  

/bE No

                                                

 
 
 
 
 
 

 
3 Maral, G., Bousquet, M., (1998) Satellite Communications Systems (John Wiley and Sons Ltd. 1998), 

Proakis, John G., (1995). Digital Communications (McGraw-Hill, Inc., 1995), and Zyren, Jim, Petrick, Al, 
(June 1998) Tutorial on Basic Link Budget Analysis (Intersil 1998) 
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2. Available Signal Level 

The product of the link budget analysis is available SNR at the receiver. To 

compare with required , received power is translated to an energy-per-bit 

equivalent,4   

/bE No

(b
rcv

o rcv

E WPN
  = ∗ 
  )R     (2.2) 

where 

bE   = Energy required per bit of information, 

oN   = Thermal receiver noise in 1 Hz of bandwidth, 

 R   = System data rate, 

 W = Spectral bandwidth. 

Thermal receiver noise level, , is expressed in units of Watts/Hz, oN

         (2.3) 0 B oN k T=

where 

   W-s/K (Boltzman’s constant),   231.38 10Bk −= ×

   Receiver temperature in degrees Kelvin. oT =

 

3. Link Margin 

The link margin (LM) compares received  with that required for the 

established BER,  

/bE No

( ) (b o b orcv req
LM E N E N= − )

                                                

 .    (2.4) 

Although this calculation of link margin has been used primarily in the fields of 

satellite and wireless communications, this metric is also relevant in predicting 

performance for an acoustic digital communications system. 

   
 

4 Zyren, Jim, Petrick, Al, (June 1998) Tutorial on Basic Link Budget Analysis (Intersil 1998) 
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B. ACOUSTIC LINK BUDGET 

The process of establishing a link margin for reliable communications is readily 

applied to the acoustic communications system. The difference is that the terms are now 

acoustic quantities. Once the acoustic SNR is transformed to an electrical quantity, it can 

be compared to  to establish a link margin.  /bE No

1.  Directivity Index 

The directivity index (DI) may be defined as the ratio of the intensity of a source 

in some specified direction (usually along the acoustic axis of the source) to the intensity 

at the same point in space of an omni-directional point source with the same acoustic 

power. Through the principle of reciprocity, the same principle applies to the receiving 

transducer. The transmitter and receiver directivity, and , are analogous to the 

RF terms for antenna gain.  

xmtDI rcvDI

2.  Pressure Spectrum Level 
Pressure spectrum level (PSL) is a function of input power and transmission bandwidth. 

PSL is analogous to SL, but accounts for signal energy distribution over the frequency 

band of interest. SL is the level expected from a narrow-band tone. For a given input 

power, SL is estimated by the following equation5: 

  
@110log source m

ref

I
SL

I
 

= 
 



2m

 .    (2.5) 

  The SL of an omni-directional projector is always referred to a standard range (1 

meter) from its acoustic center. At 1 meter the acoustic center of an omni-directional 

source is surrounded by a sphere of surface area . If the power output is P 

Watts, then the source intensity at 1 meter is 

24 12.6rπ =

2W m
12.6

xmtP and SL becomes6 

   18

110log
12.6 .67 10

xmtPSL −
= × × 




                                                

.    (2.6) 

 
5 Waite, A. D., (1998) SONAR for Practicing Engineers (Thompson Marconi Sonar Ltd. 1998) 
6 Waite, A. D., (1998) SONAR for Practicing Engineers (Thompson Marconi Sonar Ltd. 1998) 
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    .    (2.7)  10 log( ) 170.8xmtSL P= +

 PSL can now be calculated from the given SL.  PSL for a pure broadband 

signal would be represented as  

       (2.8) 1010 log ( )PSL SL W= − i

where W is bandwidth in Hz. 

 For direct sequence spread spectrum (DSSS), the relationship is 

10 1010 log ( ) 10 log ( )PSL SL W m= − +i i    (2.9) 

where m is the number of chippettes. In frequency hopping spread spectrum, one tone is 

transmitted at a time, therefore PSL=SL. Pressure spectrum level for a multi-frequency 

shift-keying (MFSK) signal is represented as 

1010 log ( )PSL SL N= − i      (2.10) 

where N is the number of tones. 

3. Received SNR 

The acoustic link budget uses basic sonar theory to estimate the available signal 

level at the receiver. The basis of the model is the sonar equation,  

xmt rcvSNR PSL TL AN DI DI= − − + +     (2.11) 

where    

SNR = signal to noise ratio at receiver,  

PSL = pressure spectrum level of transmitting platform,  

TL = transmission loss in the medium,  

AN = ambient noise, 

xmtDI  = transmitter directivity, 

rcvDI  = receiver directivity.   

All quantities are expressed in dB re 1µPa.  

Equation 2.12 is analogous to the RF link budget represented in Equation 2.1. 

Note that the PSL and SNR terms include transmit and receive directivity for simplicity. 
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Received power in the RF case refers to SNR in acoustic terms, transmitted power 

corresponds to PSL, directivity index represents antenna gain, and the combination of 

transmission loss and ambient noise equate to free space path loss and noise terms in the 

RF link budget equation. 

C. CHANNEL COMPONENTS OF THE SONAR EQUATION 

1. Transmission Loss 
Transmission loss (TL) is a function of source-to-receiver range, r, and is 

determined by combining the signal loss from source to receiver due to a combination of 

spreading and attenuation.  

Spherical spreading of the signal is assumed to exist up to a range equal to water 

depth of the channel. Beyond this range, cylindrical spreading is assumed to exist by 

virtue of the bounded propagation medium. Spherical spreading loss is proportional to 
21 r and is expressed as 

( )1020 logsphereTL r= i .     (2.12)  

Cylindrical spreading is proportional to 1  and is expressed as r

( )1010 logcylindTL r= i  .     (2.13)  

where r is range in meters. 

 Attenuation in seawater is caused by three mechanisms: shear viscosity, 

volume viscosity, and ionic relaxation. As shown by Urick7, absorption in seawater is 

frequency dependent and is modeled by the expression  

2 2
4 2

2 2

0.11 44 3.0 10 3.3 10
1 4100

f f f
f f

α − −= + + × + ×
+ +

3

                                                

  (2.14) 

where  is the attenuation coefficient in dB/km and f is frequency in kHz.  α

 
7 Urick, Robert (1996) Principles of Underwater Sound for Engineers 3rd. Edition  (Peninsula 

Publishing, 1996) 
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Figure 3.   Coefficient for acoustic attenuation in seawater. 

 
The loss due to attenuation in seawater is expressed as 

310attenTL rα −= ×       (2.15)  

where r is range in meters. 

Geometric spreading and attenuation are combined to yield total transmission loss 

(TL). An example of TL is shown in Figure 4. We call attention to the strong dependence 

on range and frequency. Consider for example, the differential attenuations experienced 

by 10 kHz and 20 kHz acoustic components where the respective attenuation coefficients 

are approximately 1 and 4 dB/km, respectively. 
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Figure 4.   Frequency dependent TL (dB re 1 µPa), plotted as a negative quantity, -TL 

2. Ambient Noise 
Frequency-dependent ambient noise (AN) can be estimated for various wind 

speeds and shipping densities using the spectral relationships compiled by Wenz8. Figure 

5 shows an example noise spectrum for high shipping density and an average wind speed 

of 10 knots. Again, we observe strong frequency dependence. Because communication 

frequencies are dominated by wind driven noise, AN varies greatly with wind speed. 

Figure 6 shows total ambient noise for wind conditions up to 25 kts.

                                                 
8 Wenz, G. M., Acoustic Ambient Noise in the Ocean: Spectra and Sources, Journal of the Acoustical 

Society of America Vol. 34,1936(1962) 
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Figure 6.   Dependence of total ambient noise on wind speed (dB re 1 µPa). 
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3. Channel SNR 
For acoustic link analysis, an important intermediate result is the gross channel 

impairment caused by environmental factors. Combining the spreading and attenuation 

losses with the noise floor, we obtain the link degradation imposed by the propagating 

medium.  

       (2.16) channelSNR TL AN= − −

 This channel SNR is naturally normalized to 0 dB and exhibits range and 

frequency dependence.  

Fr
eq

 (k
Hz

)

Range (m)

-100

-120

-110

-120

-100

 

Figure 7.   Channel SNR (dB) for a noise environment with heavy shipping and 5 kt. winds.  
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III. APPLICABILITY OF THE LINK BUDGET 

Link budgeting is useful as a design tool where potential environments and 

system geometries are unknown. However, there are limitations in the accuracy of this 

approach. With further analysis, the link budget can be adapted to address these issues 

and improve overall precision. 

A.  LIMITATIONS 

The link budget method of acoustic propagation analysis is a simplified technique 

providing the analyst with a first-order estimate of link performance. There are inherent 

inaccuracies that must be considered, all of which require incorporation of physics based 

propagation modeling. 

1. Sound Speed Profile 

This model assumes an iso-velocity sound speed profile and therefore ignores the 

effects of refraction as the sound travels down the channel. Sound speed gradients will 

cause the signal to undergo more interactions with the surface and bottom as it travels 

from source to receiver. As discussed in the next chapter, more boundary interactions will 

lead to further signal reduction that is unaccounted for in the link budget. Shadow zones, 

another product of sound speed gradients are also unaccounted for.   

2. Bottom and Surface Interactions 

Losses due to boundary interactions are as of yet not addressed in the acoustic 

link budget analysis. At the frequencies of interest, surface and bottom interactions are a 

major loss factor that should be addressed. The Rayleigh criteria evaluates acoustic 

wavelength relative to the roughness of the sea surface to assess the degree of reflectivity. 

Frequencies of interest exceed the Rayleigh criteria for all sea states greater than zero. 

For example, let us assume sea state 1, transmitting frequency of 15 kHz, and a nominal 

grazing angle of 20 degrees. Wavelength of this signal is 0.1 m and the corresponding 

wave number is 62.8. Wave height for sea state one is approximately 0.1m We now 

calculate the Rayleigh parameter9. 
                                                 

 13

9 Urick, Robert (1996) Principles of Underwater Sound for Engineers 3rd. Edition  (Peninsula 
Publishing, 1996) 



   ,     (3.1) 2 sinR kH θ=

where  

R= Rayleigh parameter, 

   k= wave number, 

    H= wave height, 

   = grazing angle. θ

Equation 3.1 represents the ratio of wave height to the z component of wavelength, λ . 

As wave height becomes large with respect to the z component of signal wavelength, the 

surface will act more as a scattering interface with increased loss per bounce. 

The Rayleigh parameter in this example is 4.2 indicating that the surface should 

be considered a scattering surface vice a reflective surface. The magnitude of the 

reflection coefficient is estimated to be  

  R=exp(-R).       (3.2) 

The reflection coefficient in this case corresponds to an 18 dB signal loss per bounce at 

the surface. This example shows that surface attenuation must be considered as a loss 

term for signals that interact with the sea surface. At shorter ranges and higher 

frequencies, direct path propagation may be assumed and the Rayleigh criteria may be 

ignored. When the surface is considered, scattering and bubble interactions will play a 

large part in signal loss.  

Interactions with the sea floor should also be considered for accuracy. The bottom 

has a number of characteristics similar to the sea surface, but its effects are more complex 

due to its diverse and stratified composition.10 The loss per interaction with the bottom is 

frequency and incident angle dependent due to Rayleigh scattering and the effects of 

bottom type on the reflection coefficient. 

                                                 
 
10 Urick, Robert (1996) Principles of Underwater Sound for Engineers 3rd. Edition  (Peninsula 

Publishing, 1996) 
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3. Transducer Directivity 

Currently, the link analysis assumes a gross gain afforded by a transducer’s 

directivity index. A more accurate way of representing the directivity term would be to 

specify a maximum on-axis gain and then express directivity as a function of angle away 

from the axis of maximum response. The sound velocity profile will have a compounded 

effect on the directivity, as the sound will be refracted away from the main axis in the 

presence of a sound speed gradient. 

 

B. COMPARISON WITH PHYSICS-BASED MODEL 

To validate the link budget approach to acoustic prediction, we compare it to the 

results of an established physics-based propagation model. The Monterey-Miami 

Parabolic Equation (MMPE)11 uses the parabolic approximation to the wave equation to 

model acoustic propagation in a wide range of underwater environments. 

The MMPE model was used to compute transmission loss in the 0-30 kHz range 

of frequencies. Channel conditions are selected to closely reflect the assumed channel for 

link budget analysis. Water depth is 200 m, source and receiver are located at 100 m, 

sound speed velocity is constant at 1500 m/s, and bottom sound speed is 1700 m/s. 

Frequency and range-dependent TL is calculated for the MMPE and link budget. 

Comparing the two, it is evident that frequency dependent attenuation is unmatched. Both 

models use identical terms for attenuation coefficient and TL . The mismatch is most 

likely due to the variation in plane-wave path length with frequency. Higher frequencies 

will attenuate more rapidly along the same path length, but they travel at more shallow 

grazing angles down the channel than low frequencies. This phenomena results in longer 

path lengths at lower frequencies for the same range from source to receiver. 

atten

The two approaches differ greatly in the variability of transmission loss. The link 

budget generates a smooth outcome from the application of simple acoustic rules of 
                                                 
11 Smith, K.B., “Convergence, stability, and variability of shallow water acoustic predictions using a split-
step Fourier parabolic equation model,” J. Comp. Acoust., Vol. 9, No. 1, pp. 243-285, 2001. 
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thumb. Conversely, the MMPE model shows as much as 15 dB variance for small 

changes in range and frequency.  

Link budgeting provides a conservative estimate in this case. Further comparison 

to physics based modeling and real world experiments is warranted to further improve the 

link budget approach. 

Link Budget TL

MMPE TL

Link Budget TL

MMPE TL

 
Figure 8.    Comparison of TL. MMPE  model exhibits less frequency dependency than 

predicted by link budgeting. 
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IV. CASE STUDY: TELESONAR DIRECTIVITY 

A. INTRODUCTION 

In this chapter the utility of the link budget approach to acoustic analysis is shown 

in a real world design problem. Seaweb is a Navy-sponsored project whose goal is to 

establish an underwater network capable of reliable digital acoustic communications. 

Point-to-point links in this network employ telesonar modems. Design criteria require the 

system to communicate with telesonar link distances up to 5 kilometers.  Presently, the 

system operates at 9-14 kHz using omni-directional transducers. Notice that this band is 

well matched to the channel SNR plotted in Figure 7. 

To enhance network performance, seaweb designers considered using improved 

transducers with steered directivity. This is accomplished by combining multiple resonant 

modes of piezo-ceramic cylinders in a controlled manner12. In the present telesonar 

frequency band of 9-14 kHz, the vibrational modes exhibited resonance separations 

greater than the transmission bandwidth, resulting in poor electroacoustic efficiency. 

B. DESIGN TRADE-OFFS 

Shifting to the 15-20 kHz frequency band would bring all transducer resonances 

within the transmission band and provide excellent transmit efficiency. Another 

advantage of a higher frequency band is reduced transducer size. In addition, multi-user 

network performance is improved with directional transmitters. 

Shifting to a higher frequency band introduces new costs and benefits. A higher 

frequency will mean increased losses in the medium due to three effects, seawater 

absorption, surface reflection and scattering losses and bottom reflection and scattering 

losses. Benefits of shifting to a higher frequency band are a lower ambient noise level and 

signal gain due to directivity in the transmitting platform. The acoustic link budget is 

used to estimate the received SNR in both bands for comparison. 

 
                                                 

12 Butler, A. L., Butler, J. L., Dalton, W. L., Rice, J. A., “Multimode directional telesonar 
transducer” Oceans 2000 MTS/IEEE Conference and Exhibition Vol. 2, pp. 1289-1292 
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C. LINK BUDGET MODEL AS A COMPARISON TOOL 

A link budget analysis is performed for each of the two frequency bands. The 

directional transducers are expected to provide a directivity index of 9 dB, which is 

applied uniformly to the 15-20 kHz band. Pressure spectrum level PSL is calculated 

assuming MFSK modulation and a transmission bandwidth of 5 kHz and is 163 dB for 

both bands. Figure 9 shows the link budget comparison of received SNR assuming both 

transducers are omni-directional. Figure 10 shows the improvement we can expect from 

the directivity term in the 15-20 kHz band. 
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Figure 9.   SNR comparison of candidate frequency bands (dB re 1 µPa). Wind speed is 5 

kts. Omni-directional transducers are used in both bands. 
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Figure 10.   SNR Comparison of candidate frequency bands (dB re 1µPa). Wind speed is 5 

kts. 9 dB directivity is employed in the 15-20 kHz band. 

 

 

D. CONCLUSIONS 
Figure 9 shows that increased attenuation at higher frequencies is more 

detrimental than the decreased noise level is beneficial. Figure 10 shows that adding 

directivity to the transducer concurrently with shifting to the higher frequency band will 

result in overall improved SNR at the receiver. From a system perspective, link budget 

analysis justifies the use of a higher frequency band provided that the implementation of 

a steered transmitter is practical. Further gains are possible through the use of a 

directional receiver. A weakness in this analysis is the neglected increase in sound 

scattering for the higher frequency band as explained in Chapter 3. 
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V. CASE STUDY: TELESONAR TRANSMITTER PRE-
EMPHASIS 

A. INTRODUCTION 

Pre-emphasis is the process of spectral weighting at the transmitter to counter the 

frequency-dependent effects of channel SNR. This case study examines potential benefits 

of pre-emphasis for spectral equalization of the received SNR. We will select a method of 

transmitter pre-emphasis based on the channel SNR and observe the resulting link 

margin.  

 

B. METHOD 

 For an illustrative example of the process, we consider a communications system 

designed to operate in the 15-20 kHz frequency band. A design specification of this 

system will be a bit error rate (BER) of 10  for noise environments corresponding to a 

wind speed of 20 kts. Maximum communications range will be 5000 km. 

6−

R a n g e  ( m )

Fr
eq

ue
nc

y 
(k

H
z)

- 1 2 5

- 1 3 0

- 1 3 1

- 1 3 2

- 1 3 3

- 1 2 6

- 1 2 7

- 1 2 8

- 1 2 9
d B

- 1 3 4

- 1 3 5

R a n g e  ( m )

Fr
eq

ue
nc

y 
(k

H
z)

R a n g e  ( m )

Fr
eq

ue
nc

y 
(k

H
z)

- 1 2 5

- 1 3 0

- 1 3 1

- 1 3 2

- 1 3 3

- 1 2 6

- 1 2 7

- 1 2 8

- 1 2 9
d B

- 1 3 4

- 1 3 5

 
Figure 11.   Channel SNR for 20 kts wind speed, exhibiting strong frequency dependence. 

 
We begin by calculating the required receiver SNR for this system. Using a BER 

of , we determine the required  for MFSK modulation with incoherent 

detection using Figure 2.  in this case will be 14 dB.  A conservative design would 

610− /bE No

o/bE N
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call for a link margin of 10 dB, therefore the system should be designed so that received 

equals 24 dB. This corresponds to an actual ratio of 251:1. Employing Equation 

2.2 for R=1200 b/s and W=5000 Hz, we calculate a required power to noise ratio ( ) of 

60.3:1. Converting to a decibel equivalent yields =17.8 dB. No directivity is present in 

the receiver; therefore the required SNR will also be 17.8 dB. We now select a PSL that 

will achieve the required SNR at mid band. 
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Figure 12.   Channel SNR as a function of frequency for r=5000 m and 20 kts wind speed. 

Channel SNR at mid-band is -134.6. A PSL of 152.4 is required to obtain a received SNR 

of 17.8 dB. 

We apply a PSL of 153 dB uniformly across the spectrum and observe the results. 

Received SNR is plotted in Figure 13. The uniform PSL results in a region of 

unsatisfactory reception. 
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Figure 13.   Received SNR for uniform PSL=153 dB. Note that a region of unsatisfactory 

SNR exists at high frequencies for ranges greater than 4400 m. 

 
Increasing PSL will satisfy system requirements but greater power consumption 

will result. This is a critical constraint in the design of a network that relies on battery 

power. Applying pre-emphasis to the transmitter improves response at higher frequencies 

while maintaining the same average PSL.  

 
Figure 13 suggests that a ramped pre-emphasis will adequately compensate for 

the transmission losses at higher frequencies. We choose a linear increase of signal 

strength with frequency as shown in Figure 13. 
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Figure 14.   Transmitter pre-emphasis to adjust for greater loss at high frequencies. 
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C. CONCLUSIONS 

Figure 15 compares the received SNR for a flat spectrum transmission to one that 

employs ramped pre-emphasis. Average PSL is equal in both cases. The system that 

employs transmitter pre-emphasis exhibits satisfactory SNR throughout the entire region 

at no additional power cost.  The system should operate with the designed BER for wind 

speeds less than or equal to 20 kts.  
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Figure 15.   Comparison of received SNR for a flat spectrum source to one with ramped pre-

emphasis. Average PSL=153 dB in both cases. Note that the pre-emphasized case shows 

adequate signal level for all ranges and frequencies at no additional cost in signal power. 
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VI.  CASE STUDY: TELESONAR SHORT-RANGE LINK 
CAPACITY  

Future uses of telesonar modems include underwater acoustic local area networks 

capable of high bandwidth digital communications. These networks have a wide range of 

potential uses including surveillance and oceanographic monitoring. Networks would 

employ shorter link distances and operate at higher frequencies than the present telesonar 

modems to take advantage of lower noise levels and greater bandwidth. Point-to-point 

communications in a notional network could range from 10 to 1500 m and employ 

frequency bands within the 30 to 100 kHz spectrum.  
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Figure 16.   Transmission loss and link performance are highly frequency dependent. As a 

result, the available transmission bandwidth will vary highly with range for a specific 

transmit power. This figure shows channel SNR with a wind speed of 5 kts. 

 
 
 
 25

200      400       600      800      1000      1200      1400 



A. RANGE DEPENDENT BANDWIDTH 

It is desirable to maximize the available communications bandwidth. As Figure 16 

shows, bandwidth will be exceedingly range dependent in the frequency bands of interest. 

Networks could be designed to take advantage of higher available bandwidths for shorter 

ranges while limiting bandwidth to acceptable limits at longer ranges. Link budget 

analysis allows us to determine acceptable bandwidth as a function of range. Figure 17 

shows a result for 5 kt. wind speed. 
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Figure 17.   Available bandwidth in the 30-100 kHz spectrum as a function of range for a 

family of specified channel SNRs. Wind speed is 5 kts.  

 
 

B. SENSITIVITY TO WIND SPEED 

 Returning to the link budget expressed in Equation 2.12, one sees that available 

bandwidth will exhibit a dependence on ambient noise level as well as range. The major 

contribution to total ambient noise in the frequency bands of interest is wind-driven sea 

state. Channel SNR and available transmission bandwidth exhibited strong noise 

dependence as shown below. Wind speed is varied from 0-25 kts and the effects are 
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shown in Figures 18 and 19. Figure 6 shows wind driven sea state’s contribution to total 

noise.  

0 kts 5 kts0 kts 5 kts

 

15 kts10 kts 15 kts10 kts

 
 

25 kts20 kts 25 kts20 kts

 
 

Figure 18.   Channel SNR as a function of wind speed.  
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Figure 19.   Range-dependent bandwidth in the 30-100 kHz spectrum as a function of wind 

speed.  
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C. CONCLUSIONS 

Channel conditions in the frequency range of 30-100 kHz are strongly range-

dependent due to seawater attenuation and spreading losses. This case study presents a 

best-case analysis of range dependent propagation loss due to the neglect of surface and 

bottom scattering and surface bubble effects. Wind speed affects the receiver SNR in two 

ways. First, higher sea state produces pronounced scattering and bubble effects, 

increasing transmission loss. Second, wind variations strongly affect the ambient noise 

level in the frequency band of interest. 
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VII. CONCLUSIONS 

A.  RESULTS 

The link budget is applied to an undersea acoustic communication system using 

the same principles as the RF link budget. The acoustic link budget incorporates terms of 

the active sonar equation to provide a first-order estimate of signal available at the 

receiver. Three case studies demonstrated the utility of an acoustic link budget in 

designing wideband communications systems.  

Link budgeting considers the range and frequency dependence of wideband 

signals in the acoustic medium. In particular, the channel SNR is strongly frequency 

dependent in the bands of interest.  

The link budget is a useful tool in visualizing the channel’s influence on the 

transmitted signal and in assessing the consequences of adapting the transmission 

strategy.  

B. RECOMMENDATIONS FOR FUTURE WORK 

 A more accurate link budget analysis would not ignore the effects of scattering at 

the surface and bottom of the communications channel. One possible solution would be 

an additional term in the attenuation factor based on the mean bottom roughness and sea-

state. This term would introduce additional losses due to the scattering effects of 

boundary interactions. Such a term would also be dependent on the sound speed profile to 

account for the increase in boundary interactions caused by gradient induced sound 

refraction. 

 Physics based modeling could be a potential method of arriving at this additional 

loss term. Numerous model runs could be performed to develop a statistical average for 

total transmission loss for variations in sound speed profile, sea-state, and bottom 

topography.  

 Real world experiments using wideband signals in shallow water would also be of 

great use in validating the link budget as an analysis tool.  
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 Link budgeting is useful as a design tool, where the potential environments and 

system geometries are unknown. As one moves from system design to performance 

prediction, information about the intended environment and source/receiver geometries 

should be incorporated into a physics-based numerical propagation model to obtain 

higher fidelity measurements.  
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APPENDIX A: MATLAB CODE 

MAIN LINK BUDGET PROGRAM 

%Link Budget Equation 

%Thesis Version 3 

clear all;  clc; 

%*********************** 

%initialize parameters 

[f,  R, depth, ws, D] = initialize; 

%*************************** 

% Transmission Loss (TL) 

disp( 'calculating TL') 

[TL, TLa, TLs, alpha1] = transmissionloss(R, f,  depth); 

%******************************* 

% Noise Level (NL) 

disp( 'calculating NL') 

[NLwind, NLship, NLturb, NLtherm, NLtotal,  NL] = noiselevel(R, 
f,  ws, D); 

%************************************** 

%Source Level 

disp( 'caluclating source level ');  

[SL] = sourcelevel(R, f);  

%************************************* 

%Link Margin 

disp( 'calculating the link margin')  

l inkmargin = SL + TL + NL; 

%************************************* 

%Calculate the 'Noise'  to be overcome 

disp( 'calculating the Noise to be overcome') 

relSNR = NL + TL; 

%************************************* 
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%PLOT OUTPUTS 



%*************************** 

disp( 'generating plots ')  

%********************* 

% %TL plots  

allplots( 'TLplots ' ,  R, f,  TL, TLa, TLs, alpha1) 

% %********************* 

% %NL plots 

 allplots( 'NLplots ' ,  R, f,  ws, D, NLwind, NLship, NLturb, NLtherm, 
NLtotal,  NL) 

% %********************** 

% %Relative SNR 

 allplots( 'relSNRplots ' ,  R, f,  ws, D, relSNR)      

%********************* 

%Link Margin plots 

allplots( ' l inkmarginplots ' ,  R, f ,  l inkmargin)    

     
INITIALIZE SUBROUTINE 

    function [f,R,depth,ws,D,Pe,nu,L] = initialize 

%************************** 

%Initialize Data 

%************************** 

 clear all;  

 clc; 

%**************************** 

%Define Range and Frequency Limits: 

%frequencies of interest (Hz) 

f_upper = 20000; 

f_lower = 15000; 

f_res = 50; 

%ranges and depth (m) 

depth = 200; 

range = 5000; 
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range_res = 10; 

%*********************************** 

%Generate Frequency and Range vectors: 

% BW = f_upper - f_lower; 

% stop = ceil(log10(f_upper+1)); 

% for i  = 1:stop; 

%     f(: , i)  = [ (1*10^(i-1)) :  (f_res*10^(i-1)):  (9.99*10^(i-1)) ] ' ;  

% end 

% f = reshape(f,9*i/f_res,1); 

% begin = find(f==f_lower); 

% finish = find(f==f_upper); 

%  

% f = f(begin:finish); 

f=(f_lower:f_res:f_upper); 

f=f';  

R = [0:range_res:range]; R(1)=1; 

%**************************** 

%Define noise related parameters 

%wind speed in m/s 

ws=20; 

%shipping activity low (D=0), med (D=0.5), high (D=1) 

D=1; 

 

TRANSMISSION LOSS SUBROUTINE 

function [TL, TLattenuation, TLspreading, alpha1] = 
transmissionloss(R, f,  depth) 

%*************************** 

% TRANSMISSION LOSS 

%******************************************* 

%TL due to Spreading - Matrix (Range x Freq) 

Rindex1 = find(R==depth);   %max range of spherical spreading 
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%Rindex2 = find(R==depth);   %max range of transitional 
spreading 

Rindex3 = find(R==depth);   %max range of cylindrical spreading 

TLspreading1 = 20*log10(R(1:Rindex1)); 

TLspreading3 = (10*log10(R(Rindex1+1:end))-10 
*log10(R(Rindex1))) + TLspreading1(end); 

TLspreadingtotal = [TLspreading1 TLspreading3]; 

TLspreading = TLspreadingtotal;  

for findex = 2:length(f) 

    TLspreading = [TLspreading; TLspreadingtotal];  

end 

%********************************************** 

%TL due to Attenuation - Matrix (Freq x Range) 

%using eqn from Urick p 108  

%note this is given in dB/kyd with f in kHz therefore need to 
convert 

fkhz = f./1000; 

alpha1 = ((0.11.*(fkhz.^2)) . /  (1 + (fkhz.^2))) + ((44.*(fkhz.^2)) . /  
(4100 + (fkhz.^2))) + ((3.0.*(10.^(-4))).*(fkhz.^2)) + 0.0033; 

for Rindex = 1:length(R) 

    for findex = 1:length(f);  

        TLattenuation(findex,Rindex) = 
alpha1(findex).*R(Rindex).*1e-3; 

    end 

end 

%*********************************************** 

%Total Transmission Loss Matrix 

TL = TLattenuation + TLspreading; 

TL=-TL; 
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NOISE LEVEL SUBROUTINE 

function [NLwind, NLship, NLturb, NLtherm, NLtotal,  NL] = 
noiselevel(R, f,  ws, D) 

%******************************* 

% NOISE LEVEL  

%******************************** 

fkhz = f./1000; 

%******************** 

%NL due to Surface Waves Option 2 frin  

NLwind = ( 50 + (7.5.*(ws.^0.5)) + (20.*log10(fkhz)) - 
(40.*log10(fkhz + 0.4)) );  

%NL due to Shipping 

NLship = ( 40 + (20.*(D-0.5)) + (26.*log10(fkhz)) - 
(60.*log10(fkhz + 0.03)) );  

%NL due to Turbulence 

NLturb = ( 17 - (30.*log10(fkhz)) );  

%NL due to thermal noise in the receiver 

NLtherm = ( -15 + (20.*log10(fkhz)) );  

%Rain 

%Industrial Noise 

%Biologics 

%*********************** 

%Total Noise Level 

NLtotal = 10.*log10( (10.^(NLwind./10)) + (10.^(NLship./10)) + 
(10.^(NLturb./10)) + (10.^(NLtherm./10)) );  

NL = NLtotal;  

for Rindex = 2:length(R) 

    NL = [NL NLtotal];  

end 

NL=-NL; 

 
SOURCE LEVEL SUBROUTINE 

 37



function [SL] = sourcelevel(R, f) 

%******************************* 

% Source Level  

%******************************** 

%SL = 171.5 + 10.*log10(Pe) + 10.*log10(nu); 

SL=153 

SL = SL.*ones(length(f),length(R)); 

 

 

PLOTS SUBROUTINE 

function varargout = allplots(plots,varargin) 

switch plots 

case 'TLplots '  

    R=varargin{1}; f=varargin{2}; TL=varargin{3}; 
TLa=varargin{4}; TLs=varargin{5}; alpha1=varargin{6}; 

    figure(1) 

    semilogx(R,TLs(1,:));  t i t le( 'TLspreading');  grid on; 

    xlabel( 'Range (m)');  ylabel( 'dB');      

    figure(2) 

    semilogy(f/1000,alpha1);  

    %title( 'attenuation coeff ');   

    grid on; 

    xlabel( 'Freq (kHz)');  ylabel( 'dB/Km');  

    xlim([1 100]); 

    figure(3) 

    pcolor(R,f/1000,TLa); 

    shading interp; 

    colorbar; 

    hold on; 

    [cs,  h] = contour(R, f/1000, TLa, [-100:10:200], 'k ');  

    clabel(cs);  
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    xlabel( 'Range (m)');  ylabel( 'Freq (kHz)');  zlabel( 'dB');  

    %title( 'TLattenuation in dB');   

    grid on; 

    hold off; 

    grid on; 

    figure(4) 

    pcolor(R,f/1000,TL); 

    caxis([-80 -40]) 

    shading interp; 

    colorbar; 

    hold on; 

    [cs,  h] = contour(R, f/1000, TL, [-200:20:200], 'k ');  

    %clabel(cs);  

    %xlabel( 'Range (m)');  ylabel( 'Freq (kHz)');  zlabel( 'dB');  

    %title( 'TL total in dB');  

    hold off; 

    grid on;  

case 'NLplots '  

    R=varargin{1}; f=varargin{2}; ws=varargin{3}; D=varargin{4}; 
NLwind=varargin{5}; NLship=varargin{6}; 

    NLturb=varargin{7}; NLtherm=varargin{8}; 
NLtotal=varargin{9}; NL=varargin{10}; 

    figure(5)  
semilogx(f/1000,NLwind, 'b' ,f/1000,NLship, 'r ' ,f/1000,NLturb, 'g' ,f/1000,NL
therm,'c ' ,f/1000,NLtotal, 'k ');  

    %title( 'NL');   

    grid on; 

    %xlabel( 'Freq (kHz)');  ylabel( 'dB');  

    legend('wind',  'shipping',  ' turbulence' ,  ' thermal' ,  ' total ');  

    ylim([0 110]); 

    xlim([0 100]); 

    %gtext({sprintf( 'wind speed: %2.1f m/s',  ws),. . .  

           %sprintf( 'Shipping coeff (D): %2.1f',  D)}); 

 39



%     figure(6) 

%     semilogx(f/1000,NLtotal);  t i t le( 'NLtotal in dB');  grid on; 

%     xlabel( 'Freq (kHz)');  ylabel( 'dB');  

%      

 

case 'relSNRplots '      

    R=varargin{1}; f=varargin{2}; ws=varargin{3}; D=varargin{4}; 
relSNR=varargin{5}; 

%     figure(7); 

%     R1k=R(11); R2k=R(21); %R5k=R(51); R10k=R(101); 
R20k=R(201); 

%     plot(f/1000,relSNR(:,11), 'k ' ,f/1000,relSNR(:,21), 'g ');  

%     %,f,relSNR(:,51), 'b ' ,f ,relSNR(:,101), 'c ' ,f ,relSNR(:,201), 'r ') ;  

%     grid on; 

%     xlabel( 'Freq (kHz)');  ylabel( 'dB');  

%     %title( 'Total Envirnmentals to Overcome');  

%     legend('1 km', '2 km', '5 km', '10 km', '20 km'); 

%     %gtext({sprintf( 'wind speed: %2.1f m/s',  ws), . . .  

%      %      sprintf( 'Shipping coeff (D): %2.1f',  D)}); 

    figure(8) 

    pcolor(R,f/1000,relSNR); 

    shading interp; 

    caxis([-160 -120]); 

    colorbar; 

    hold on; 

    %[cs, h] = contour(R, f/1000, relSNR,[-200:20:200], 'k ');  

    %clabel(cs);  

    %xlabel( 'Range (m)');  ylabel( 'Freq (kHz)');  zlabel( 'dB');  

    %title( 'Total Environmentals to Overcome in dB');  

    hold off;    

case ' l inkmarginplots '  

    R=varargin{1}; f=varargin{2}; linkmargin=varargin{3}; 
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    figure(9) 

    pcolor(R,f/1000,linkmargin); 

    shading interp; 

    colorbar; 

    hold on; 

    [cs,  h] = contour(R,f/1000, linkmargin, [17.8 17.8],  ' r ' ) ;  

    %clabel(cs);  

    xlabel( 'Range (m)');  ylabel( 'Freq (kHz)');  zlabel( 'dB');  

    %title( 'Link Margin in dB');  

    hold off;  

end 

     

    PRE-EMPHASIS EXAMPLE SUBROUTINE 

%Equalizer: Determines ramped window from bottom to top of band 
to apply as source level to the link budget 

fl=15000;               %limits of frequency band 

fu=20000; 

m=find(f>fl);  

n=find(f==fu); 

fr2=f(m:n);             % band vector 

relSNR2=relSNR(m(1):n,:);   % channel SNR for the band of interest 

low=150;                % low end of pre-emphasis 

high=156;               % high " 

% The following creates the weighted source level matrix 

EQ=linspace(low,high); 

XX=ones(max(size(EQ)),length(R)); 

for i=1:100; 

    EQ2(i,:)=XX(i,:) .*EQ(i);  

end 

link2=relSNR2+EQ2; 

linkmargin2=linkmargin(m:n,:);  

% Output plot 
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figure; 

subplot(2,1,1) 

pcolor(R,fr2/1000,linkmargin2); 

caxis ([15 25]); 

shading interp; 

xlim([3000 5000]); 

colorbar; 

hold on; 

[cs,h]=contour(R,fr2/1000, linkmargin2,[17.8 17.8],  ' r ' ) ;  

subplot(2,1,2); 

pcolor(R,fr2/1000,link2); 

shading interp; 

caxis([15 25]); 

xlim([3000 5000]); 

colorbar; 

hold on; 

[cs h]=contour(R,fr2/1000,link2,[17.8 17.8], 'r ') ;  
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